Labrador Retriever	

Ocular disorders known or presumed to be inherited (published)

	Diagnosis	Description and comments specific to the breed	Inheritance	Gene/ marker test	References
Α	Entropion	Lower eyelid	Unknown	NO	1,2,38,39
В	Macular corneal dystrophy (MCD)	Middle-aged dogs. They develop cloudy eyes due to an abnormal accumulation of glycosaminoglycans	Autosomal recessive	CHST6	40,42
С	Limbal mela- noma		Unknown	NO	3,39
D	Iris melano- ma	High incidence of this neoplasia in Labrador; May cause secondary glaucoma	Presumed autosomal recessive	NO	4,39
E	Glaucoma		Unknown	NO	5
F	Cataract	At least 3 types: 1.Posterior polar (cortical or subcaspular), unilateral but becoming bilateral. In dogs between 6 to 18 months. Slowly progressive	1.Presumed autosomal dominant with incomplete penetrance	NO	1,2,6,7,8, 9,10,38,39

		2. Posterior cortical polar cataract progress to mature, blinding cataract at 15-18 months	2.Presumed autosomal dominant with incomplete penetrance		
		3. Anterior subcapsular / cortical punctate suture line cataract. appears from 4-5 y.o., increasing incidence with age, never affecting vision	3.unknown		
G	Progressive Retinal Atrophy (PRA)	Fundus changes seen from 2-4 y.o. ERG abnormal at 18 month of age	Autosomal recessive	prcd	11,12,13,14, 15,16,17,18, 19,20,21,38, 39
н	Retinal pig- ment epithe- lial dystrophy (RPED)	Photoreceptor death secondary to disease of pigmented epithelium; Late Onset: from 5 year of age. Seen in England but uncommon in other parts of Europe and USA	Unknown	NO	22,23,24,38, 39
I	Retinal dys- plasia – folds/ geo- graphic/ to- tal (without skeletal de- fects)	Present at birth with all 3 forms: Geographic and total RD forms associated with visual impairment or blindness.	Presumed Autosomal recessive	NO	25,26,27,28, 29,30,31,32, 33,34,35,38, 39

		Total RD seen in Europe but rare in the USA Milder forms seen in the USA			
J	Retinal dysplasia — folds/geogra phic/detached (with skeletal defects) RD/OSD1	Inherited defect of the Labrador Retriever and Samoyed affecting both the eyes and the forelimbs. Recessive effect on the skeleton and incomplete dominant on the eye. Homozygous recessive dogs: detached forms with cataracts and corneal pigmentation (blindness) with form of short limbed dwarfism Heterozygous dogs: uni or bi lateral ocular defects with folds or geographic forms. Normal or impaired vision, rarely progressive.	Presumed autosomal dominant with incomplete penetrance	COL9A3	25,26,27,28, 29,30,31,32, 33,34,35, ,36,37,38,39
K	Achromatopsia type 2 (ACHM2-LR)	Day blindness and photophobia; 8-10 weeks of age	Autosomal recessive	CNGA3	41
L	Stargardt Disease	Clinical signs indicating cone and rod degeneration	Autosomal recessive	ABCA4	43

The ECVO's advice relating to hereditary eye disease control

Please see ECVO Manual chapter 8: VET Advice

Recommendations regarding age and frequency for eye examinations

Please see ECVO Manual chapter 7: ECVO Age and Frequency recommendations

Other ocular disorders (reported)

	Diagnosis	Source		
Α	Distichiasis	ACVO genetics committee		
В	Ectropion	ACVO genetics committee		
С	Corneal dystrophy -epithelial/stromal	ACVO genetics committee		
D	Persistent Pupillary Membranes	ACVO genetics committee		
E	Persistent hyaloid artery	ACVO genetics committee		
F	PHPV/PHTVL	ACVO genetics committee		
G	Vitreous degeneration	ACVO genetics committee		
Н	Uveal cysts	ACVO genetics committee		

<u>References</u>

- 1. Hodgman SFJ. Abnormalities and defects in pedigree dogs: I. An investigation into the existence of abnormalities in pedigree dogs in British Isles. J Small Anim-Pract. 1963;4:447.
- 2. Johnston DE and Cox B. The incidence in purebred dogs in Australia of abnormalities that may be inherited. Aust Vet J. 1970 Oct;46:465-474.
- 3. Donaldson D, Sansom J, Scase T, et al. Canine limbal melanoma: 30 cases (1992-2004). Part 1. Signalment, clinical and histological features and pedigree analysis. VetOphthalmol. 2006 Mar-Apr;9:115-119.

- 4. Cook CS. Inherited iris melanoma in Labrador Retriever dogs. Proc Am Coll Vet Ophthalmol. 1997;27:106.
- 5. Strom AR, Hassig M, Iburg TM, et al. Epidemiology of canine glaucoma presented to University of Zurich from 1995 to 2009. Part 1: Congenital and primary glaucoma (4 and 123 cases). Vet Ophthalmol. 2011 Mar;14:121-126.
- 6. Curtis R and Barnett KC. A survery of cataracts in Golden and Labrador Retrievers. J Small AnimPract. 1989;30:277.
- 7. Barnett KC. Hereditary cataract in the dog. J Small AnimPract. 1978 Feb;19:109-120.
- 8. Barnett KC. The diagnosis and differential diagnosis of cataract in the dog. J Small AnimPract. 1985;26:305.
- Aguirre GD, et al. A Re-Examination of the Mode of Inheritance of Posterior Cortical Cataracts in Labrador Retrievers and Golden Retrievers. ACVO Proceedings. 2004.
- 10. Kraijer-Huver IM, Gubbels EJ, Scholten J, et al. Characterization and prevalence of cataracts in Labrador Retrievers in The Netherlands. Am J Vet Res. 2008 Oct;69:1336- 1340.
- 11. Barnett KC. Two forms of hereditary and progressive retinal atrophy in the dog. I. The miniature poodle. II. The Labrador Retriever. J Am Anim Hosp Assoc. 1965:234.
- 12. Goebel HH and Koppang N. Ultrastructural studies on the progressive retinal atrophy of the Labrador dog. J Neuropathol Exp Neurol. 1984;43:310.
- 13. Aguirre GD and Acland GM. Variation in retinal degeneration phenotype inherited at the pred locus. Exp Eye Res. 1988 May;46:663-687.
- 14. Aguirre GD and Acland GM. Progressive retinal atrophy in the Labrador Retriever is a progressive rod-cone degeneration (prcd). Trans Am Coll Vet Opthalmol. 1989;20:150.

- 15. Kommonen B and Karhunen U. A late receptor dystrophy in the Labrador Retriever. Vision Res. 1990;30:207-213.
- 16. Aguirre GD and Acland GM. Inherited retinal degeneration in the Labrador Retriever dog. A new animal model of RP. Invest Ophthalmol Vis Sci (Supp). 1991;32.
- 17. Kommonen B, Penn JS, Kylma T, et al. Early ultrastructural changes in photoreceptor degeneration in Labrador Retrievers. Proc European Society of Veterinary Ophthalmology. 1993:26.
- 18. Kommonen B, Kylma T, Karhunen U, et al. Impaired retinal function in young Labrador Retriever dogs heterozygous for late onset rod-cone degeneration. Vision Res. 1997 Feb;37:365-370.
- 19. Zangerl B, Goldstein O, Philp AR, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics. 2006 Nov;88:551-563.
- 20. Acland GM, Ray K, Mellersh CS, Gu W, Langston AA, Rine J, Ostrander EA, Aguirre GD. Linkage analysis and comparative mapping of canine progressive rod-cone degeneration (prcd) establishes potential locus homology with retinitis pigmentosa (RP17) in humans. Proceeding of the National Academy of Sciences of the United States of America (1998): 95, 3048–3053.
- 21. Acland GM, Ray K, Mellersh CS, Landston AA, Rine J, Ostrander EA, Aguirre GD. A novel retinal degeneration locus identified by linkage and comparative mapping of canine early retinal degeneration. Genomics (1999) 59, 134–142.
- 22. Aguirre GD and Acland GM. Use and misuse of electroretinography in the diagnosis of inherited retinal diseases in dogs. Proc Am Coll Vet Ophthalmol. 1997;27:37.
- 23. Barnett KC. Central progressive retinal atrohy in the Labrador Retriever. Vet Ann. 1969;17:142.
- 24. Hereditary eye abnormalities in the dog #2. Central progressive retinal atrophy. The Animal Health Trust, Small Animals Centre. November. 1977.

- 25. Barnett KC, et al. Hereditary retinal dysplasia in the Labrador Retriever in England and Sweden. J Small AnimPract. 1970;10:755.
- 26. Kock E. Retinal dysplasia. Thesis, Stockholm, 1974.
- 27. Carrig CB, MacMillan A, Brundage S, et al. Retinal dysplasia associated with skeletal abnormalities in Labrador Retrievers. J Am Vet Med Assoc. 1977 Jan 1;170:49-57.
- 28. Carrig CB, Schmidt GM and Tvedten HML. Growth of the radius and ulna in Labrador Retriver dogs with ocular and skeletal dysplasia. Vet Radiol. 1990;31:165.
- 29. Carrig CB, Sponenberg DP, Schmidt GM, et al. Inheritance of associated ocular and skeletal dysplasia in Labrador Retrievers. J Am Vet Med Assoc. 1988 Nov 15;193:1269- 1272.
- 30. Tvedten HW. Ocular and osseous dysplasia associated with skeletal abnormalities in Labrador Retrievers. Proc Am Coll Vet Pathol. 1980;31:80.
- 31. Nelson D and MacMilan A. Multifocal retinal dysplasia in the field trial Labrador Retriever. J Am Anim Hosp Assoc. 1983;19:388.
- 32. Blair NP, Dodge JT and Schmidt GM. Rhegmatogenous retinal detachment in Labrador Retrievers. I. Development of retinal tears and detachment. Arch Ophthalmol. 1985 Jun;103:842-847.
- 33. Blair NP, Dodge JT and Schmidt GM. Rhegmatogenous retinal detachment in Labrador Retrievers. II. Proliferative vitreoretinopathy. Arch Ophthalmol. 1985 Jun;103:848-854.
- 34. Gionfriddo JR, Betts DM and Niyo Y. Retinal and skeletal dysplasia in a field trial Labrador puppy. Canine Pract. 1992;17:25.
- 35. Acland GM and Aguirre GD. Oculoskeletal dysplasia in the Samoyed and Labrador Retriever dogs: 2 nonallelic disorders akin to Stickler-like syndrome affecting humans. Presented at the 2nd international DOGMAP Meeting, Cambridge, Great Britain. 1995.

- **36**. Goldstein O, Guyon R, Kukekova A, et al. COL9A2 and COL9A3 mutations in canine autosomal recessive oculoskeletal dysplasia. Mamm Genome. 2010 Aug;21:398-408.
- 37. Smit JJ, Temwitchitr J, Brocks BA, Nikkels PG, Hazewinkel Hal. Evaluation of candidate genes as a cause of chondrodysplasia in Labrador Retrievers. Vet J (2011
- 38. Rubin Lionel F., Inherited Eye Diseases in Purebred Dogs, Baltimore: Williams & Wilkins, 1989;182-193.
- 39. Chaudieu G. Chahory S. Affections oculaireshéréditairesou à prédispositionraciale chez le chien.2nd ed. Ed. Du Point Vétérinaire, 2013;365-372.
- 40. Tetas Pont R, Downs L, Pettitt L, Busse C, Mellersh CS. A Carbohydrate Sulfotransferase-6 (CHST6) gene mutation is associated with Macular Corneal Dystrophy in Labrador Retrievers. Vet Ophthalmol 19(6):488-492, 2016.
- 41. Tanaka N, Dutrow EV, Miyadera K, Delemotte L, MacDermaid CM, Reinstein SL, et al. Canine CGNA3 gene mutations provide novel insights into human Achromatopsia-associated channellopathies and treatment. (2015) PLoS ONE 10(9): 30138943
- 42. Busse C, Kafarnik C, Linn-Pearl R, Volmer C et al. Phenotype of macular corneal dystrophy in Labrador Retrievers: A multicenter study. Vet Ophthalmol 22:294-304, 2019.
- 43. Makelainen S, Godia M, Hellsand M, Viluma A et al. An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease. PLoS Genet. 15(3):e1007873, 2019.